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Acyclic Coloring

proper vertex coloring without bichromatic cycles
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Algorithms for Acyclic Coloring

Algorithms based on maximum degree ∆(G )

I If ∆(G ) ≤ 3, then G can be acyclically colored using 4 colors
of fewer in linear time.

I If ∆(G ) ≤ 5, then G can be acyclically colored using 9 colors
of fewer in linear time.



Coloring

proper vertex coloring

without bichromatic P4s

star

chromatic number

χs(G ) ≥ χa(G ) ≥

χ(G )

Every pair of colors induces a disjoint collection of stars



Star Coloring

proper vertex coloring without bichromatic P4s

star chromatic number χs(G ) ≥ χa(G ) ≥ χ(G )

Every pair of colors induces a disjoint collection of stars



Google Scholar Queries

I graph coloring : ∼109,000 results

I “acyclic coloring ”: 150 results

I “star coloring ”: 95 results

How can we leverage what is known about the
classical coloring problem?
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Acyclic Coloring

Theorem (Gebremedhin et. al., 2008)

If a mapping φ is a coloring of a chordal graph G , then φ is also an
acyclic coloring of G .
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Acyclic Coloring

Theorem (Gebremedhin et. al., 2008)

If a mapping φ is a coloring of a chordal graph G , then φ is also an
acyclic coloring of G .

Application: Band graphs (from banded matrices)

Does G have to be chordal for this to be the case?
For which other graphs is this true?



When is Every Coloring Also an Acyclic Coloring ?

Theorem
Every coloring of G is also an acyclic coloring if and only if G is an
even-hole-free graph.

even-hole-free graph

A graph is even-hole-free if it contains no induced even cycle.

Also allows odd chordless cycles



Acyclic Coloring

What about when χ(G ) = χa(G )?
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When is Every Coloring Also a Star Coloring ?

I every coloring must also be an acyclic coloring
⇒ must be subclass of the even-hole-free graphs

I cannot contain induced P4

Definition (trivially perfect graph)

A graph G is trivially perfect if for every induced subgraph G ′ of G
the number of maximal cliques in G ′ is equal to the size of the
largest independent set in G ′

Theorem (Golumbic 1978)

A graph is trivially perfect if and only if it has no induced C4 or P4.
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Coloring ⇐⇒ Star Coloring

Theorem
The graphs for which every coloring is also a star coloring are
exactly the trivially perfect graphs.

Proof.

Corollary

If G is a trivially perfect graph then χ(G ) = χa(G ) = χs(G ).
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Acyclic Coloring ⇐⇒ Star Coloring

Theorem
The graphs for which every acyclic coloring is also a star coloring
are exactly the cographs.

Definition (cograph)

A graph is a cograph if and only if it contains no induced P4.

Theorem
cographs can be acyclically colored (and thus star colored) in linear
time.
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Promise Algorithms vs. Robust Algorithms

Promise Algorithms

I Assume input is in the restricted domain

I Behavior undefined when input isn’t in the domain
Example: independent set (NP-hard!) in well-covered graphs
(NP-hard to recognize!)

Robust Algorithms

Solves the problem if the input is in the domain. If not, returns a
certificate that says the input isn’t in the domain
Example: maximum clique (NP-hard!) in unit disk graphs
(NP-hard to recognize!)



Acyclic Coloring even-hole-free graphs

chordal graphs

Recognizable and colorable in polynomial time

(even-hole,diamond)-free graphs

Recognizable and colorable in polynomial time

(C4, 2K2)-free graphs (pseudosplit graphs)

Recognizable and colorable in polynomial time



Acyclic Coloring even-hole-free graphs robustly

even-hole-free graphs

I Best known recognition algorithm runs in O(n15) time

I No known efficient algorithm for coloring

Example: Suppose we had an algorithm that finds an optimal
coloring of any graph.
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